

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

UCRL-MA-153515

Parallel Dislocation Dynamics DD3d

User’s Manual

M. Bartelt, V. Bulatov, W. Cai, M. Hiratani,
T. Pierce, M. Rhee, M. Tang

June 4, 2003

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Parallel Dislocation Dynamics

DD3d User’s Manual

Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, CA 94550,USA

Contributors:

(in alphabetical order)

Maria Bartelt (CMS), bartelt3@llnl.gov, (925) 422-7259

Vasily Bulatov (CMS), bulatov1@llnl.gov, (925) 423-0124

Wei Cai (CMS), caiwei@llnl.gov, (925) 424-5443

Masato Hiratani (CMS), hiratani1@llnl.gov, (925) 423-0896

Tim Pierce (CASC), pierce7@llnl.gov, (925) 423-6900

Moono Rhee (NTED), rhee1@llnl.gov, (925) 424-4990

Meijie Tang (PAT),tang7@llnl.gov, (925) 422-2415

This work was performed under the auspices of the U. S. Department
of Energy by the University of California, Lawrence Livermore

National Laboratory under Contract No. W-7405-Eng-48.

June 4, 2003

1

Contents

1 Data Structure 3
1.1 Nodes . 3
1.2 Domains . 5
1.3 Cells . 7
1.4 Parameters . 8

2 Algorithm Flow Chart 11
2.1 Initialization . 11
2.2 Main Loop . 13

3 Node Force 15

4 Mobility Laws 22

5 Event Detection and Handling 26
5.1 Four Types of Events . 26
5.2 Event Detection . 28
5.3 Event Handling . 28

6 Remesh 30

7 Load Balancing 30
7.1 Function Migrate . 30

8 Loading Condition 33

9 Visualization 34

10 How to Use 37
10.1 Compile and Run . 37
10.2 Input Files . 37
10.3 Output Files . 38

A List of Control Variables 40

B Nodal Driving Force Calculation 42

C Predicting Segment Pair Collision 42

D Cost Analysis 45

2

1 Data Structure

In DD3d dislocations are represented by nodes that are interconnected by straight segments, as shown in
Fig. 1. The nodes can be discretization nodes for representing a smooth line (e.g. node 1, 2, 3) or a physical
node where three dislocations meet (e.g. node 0). Both discretization and physical nodes are treated on
equal footing in DD3d — they have a common data structure and essentially the same equations of motion.
The position of nodes can be any real number, i.e. they do not sit on a lattice. Two nodes connected by an
arm are called neighbors. A node can have arbitrary number of neighbor nodes. The arms between nodes
represent straight dislocation segments, hence are associated with a Burgers vector. The Burgers vector on
each arm is fixed until it is destroyed or altered due to a dislocation reaction.

The information for each arm is redundantly stored on the two end nodes. The Burgers vector is defined
along the line direction that points from the current node (that stores the Burgers vector) to its neighboring
node. Therefore, the Burgers vectors for every arm stored on its two end nodes are the opposite of each
other, e.g. ~b01 +~b10 ≡ 0. With this convention, the sum of all Burgers vectors stored in every node must be
zero as well, e.g. ~b01 +~b02 +~b03 ≡ 0.

The DD3d simulation proceeds by integrating the equations of motion for all the nodes, i.e. updating
the nodal positions at every time step. New nodes may be created and old nodes may be deleted during the
simulation, to reflect the physical creation and annihilation of dislocation lines, and to maintain a faithful
yet efficient discretization of the evolving dislocation network.

discretization node
physical node 1

2

3

b02

b01

b03

b10

0

Figure 1: Nodal representation of dislocation network in DD3d (see text). ~b01 is the Burgers vector for the
directed arm from node 0 to node 1.

1.1 Nodes

In Node.h the data structure for nodes are defined as follows.

typedef struct _node Node_t ;
struct _node {

...
real8 x, y, z ; /* nodal position */
real8 fX, fY, fZ ;/* nodal force */
real8 vX, vY, vZ ;/* nodal velocity */

real8 oldx, oldy, oldz ; /* node position in last step */
...
Tag_t myTag ; /* Tag (domainID,index) for node */
int numNbrs ; /* number of neighbor nodes */
Tag_t *nbrTag ; /* pointers of neighbor node tags */

3

real8 *burgX, *burgY, *burgZ;/* burgers vector */
real8 *nx, *ny, *nz; /* glide plane */
real8 *ux, *uy, *uz, *ur; /* line direction and length */
...

int constraint ; /* type of constraint on node */

int cellIdx ; /* cell node is currently sorted into */
int cell2Idx;
int native ; /* 1 = native node, 0 = ghost node */

Node_t *next ; /* pointer to next node in queue (ghost or free) */
Node_t *nextInCell ; /* used to queue node onto current containing cell */

Node_t *nextInCell2 ; /* used to queue node onto (secondary) cell for
collision detection */

} ;

For each node, ~r =(x, y, z) specifies its position; ~f =(fX, fY, fZ) is the force acting on it; and ~v =(vX,
vY, vZ) is its velocity in response to this force. (oldx, oldy, oldz) stores the nodal position in the last
time step. They are used to determine how much a node has moved, for computing the incremental plastic
strain in the current time step.

The myTag entry of specifies the identification of the node. A Tag t is a structure of two integers –
(domainID, index), where domainID specifies which domain (each domain is handled by a separate CPU,
see next section) the node belongs to, and index specifies the node’s index within that domain. Each node
can have arbitrary number of neighbors. The total number of neighbors is given in numNbrs (a positive
integer), and the tags of neighboring nodes are stored in array *nbrTag.

The Burgers vectors of each arm ~bj (j = 0, · · · , numNbrs−1) are stored in three arrays (*burgX, *burgY,
*burgZ). Similarly, the glide plane normal ~nj of each arm are stored in (*nx, *ny, *nz). The unit vectors
for each arm’s line direction are stored in (*ux, *uy, *uz), and length of each arm are stored in *ur. The
integer constraint specifies the type of constraint on the node: e.g. 0 means no constraint and 7 means
the node is fixed.

For computational efficiency the simulation space is also divided into cells (see next section). cellIdx
specifies which cell the node belongs to. Nodes belong to the same cell also forms a queue for fast referencing.
The pointer *nextInCell points to the next node in each queue. cell2Idx and *nextInCell2 are for the
second (independent) cell structure and have similar meaning as cellIdx and *nextInCell.

Nodes that are located within the physical boundary of a domain are called native nodes to this domain.
Others are called ghost nodes to this domain. When DD3d runs in parallel, each CPU (corresponding to one
domain) stores the information of all of its native nodes, plus the information of some ghost nodes, which
are native to other domains surrounding this domain. native= 1 if the node is native; native= 0 if it is
ghost. All native nodes form a queue; all ghost nodes form another queue. The pointer *next points to the
next (native/ghost) node in these queues.

Therefore, there are multiple ways to enumerate the nodes. One way is to loop through all the tags. One
can also traverse the native node queue and ghost node queue. One can also loop through all the cells (or
cell2s) and traverse the node queue on each cell (or cell2).

4

1.2 Domains

DD3d is a parallel code based on MPI (Message Passing Interface). Except in the initialization phase, all
processors are equivalent, i.e. there is no distinctions such as “master” and “slave” between processors. The
entire simulation space is a 3-dimensional rectangular box, which is divided into different “domains”. This
decomposition is done sequentially along x, y, z axises (in Decomp.c). When a text input file is used, CPU
0 reads in the entire nodal structure and decompose the data into domains. First the entire space is divided
into numXdoms chunks along the x direction such that each chunk contains equal number of nodes. Each
chunk is then divided along y direction by numYdoms times, with the resulting chunk again divided along z
direction by numZdoms. Each chunk after this decomposition is a domain, as illustrated in Fig. 2(a). CPU 0
then inform other CPUs, each in charge of one domain, of the information on their native nodes. After that,
each CPU only exchange nodal information with its neighboring CPUs (domains) during the simulation.
Ideally, the number of nodes per domain should be around 200-1000.

y

z

x

y

z

x
(a) (b)

Figure 2: (a) Decomposition of total simulation space into 3*3*2 domains along x, y, z axises. (b) Division
of total space into 5*3*2 equally sized cells.

The root data structure for each CPU (domain) is home. It is defined (in Home.h) as follows.

typedef struct _home Home_t ;
struct _home {

int myDomain ; /* index for this domain */
int numDomains ; /* total number of domains */
int cycle ; /* current simulation cycle */
int subcycle ; /* current subcycle within cycle */
int lastCycle ; /* cycle to stop simulation */

Param_t *param;

Node_t *nativeNodeQ ; /* head pointer of native node queue */
Node_t *ghostNodeQ ; /* head pointer of ghost node queue */
...
Node_t **nodeKeys ;
...
int *cellList ;
int cellCount ;
int nativeCellCount ;
Cell_t **cellKeys ;

int remoteDomainCount ; /* number of neighbor domains */
int *remoteDomains ; /* encoded indices of the neighbor domains */
RemoteDomain_t **remoteDomainKeys ; /* pointers to RemoteDomain_t structs */

5

real8 *domBoundX ; /* array for the boundaries of all domains */
real8 **domBoundY ;
real8 ***domBoundZ ;

real8 domXmin ; /* boundary of this domain */
real8 domXmax ;
real8 domYmin ;
real8 domYmax ;
real8 domZmin ;
real8 domZmax ;

} ;

myDomain specifies the the ID of the assigned domain for this CPU. The total number of domains isnumDomains,
which equals to nXdoms×nYdoms×nZdoms. The boundaries of all domains (as given by the domain decom-
position) are stored in arrays *domBoundX, **domBoundY, ***domBoundZ, while the boundary of the current
domain is specified by domXmin, · · ·, domZmax. Pointer *param points a structure that holds all the control
parameters of the simulation (see Section 2.4).

All the native nodes of the domain are stored in **nodeKeys, which is an array of pointers, each pointer
points to the memory address of a node structure. The node tag specifies the entry of the node in the
**nodeKeys array. For example, nodeKeys[12] in domain 2 stores the pointer of the node with tag (2,12).

Each domain also holds an list of pointers to remoteDomain structures: they are (reduced) images of
home structures on neighboring domains. The “RemoteDomain” structure is defined (in RemoteDomain.h)
as follows.

typedef struct _remotedomain RemoteDomain_t ;
struct _remotedomain {

int domainIdx ; /* encoded index of this domain */
int numExpCells ; /* number of native cells exported to this domain */
int *expCells ; /* list of encoded indices of the exprted cells */
...
Node_t **nodeKeys ; /* indexed by node’s tag.index, points to Node_t */
...

} ;

The **nodeKeys array of a remoteDomain stores the pointers of ghost nodes that are native to this remoteDomain.
For example, if domain 0 has a copy of node (1, 24) (a native node of domain 1) as its ghost node, it can be
referenced from domain 0 by home->remoteDomains[1]->nodeKeys[24].

Looping through all native nodes by nodeKeys[] and all ghost nodes by remoteDomains[]->nodeKeys[]
can be inconvenient. Thus all native nodes are linked to form a queue, with head pointer *nativeNodeQ.
Similarly *ghostNodeQ is the queue head of all ghost nodes. The *next pointer in each node (see previous
section) points to the next node in the queue.

6

1.3 Cells

For computational efficiency the simulation box is also divided into equally sized cells, as shown in Fig. 2(b).
The interaction between nodes in the same or neighboring cells are taken into account explicitly. The
contributions from far away nodes are grouped into cells. Ideally, the number of nodes per domain should
be around 20-100. The total number of cells should not exceed 1000.

The total number of cells for the entire problem is nXcells×nYcells×nZcells. The cells that are
covered by or intersect with the current domain are called native cells. Cells that are not native but are
neighbors of native cells are ghost cells. The array **cellKeys in home holds the pointers of all (native and
ghost) cell structures. The cell structure is defined (in Cell.h) as follows.

typedef struct _cell Cell_t ;
struct _cell {

Node_t *nodeQ ; /* queue head of nodes currently in this cell */
int nodeCount ;/* number of nodes on nodeQ */

int *nbrList ; /* list of neighbor cell encoded indices */
int nbrCount ; /* number of neighbor cells */

int *domains ; /* domains that intersect cell (encoded indices) */
int domCount ; /* number of intersecting domains */

int baseIdx ; /* encoded index of corresp’ base cell (-1 if not */
/* periodic) */

real8 xShift ; /* if periodic, amount to shift corresp’ base coord */
real8 yShift ;
real8 zShift ;

} ;

A cell could intersect multiple domains, the indices of which are stored in the *domains array, with total
count domCount. All the nodes inside the cell are linked into a queue, headed by *nodeQ. The next node in
this queue is pointed by *nextInCell in each node. The total number of nodes in this queue is nodeCount.

The indices of all cells that neighboring the current cell is stored in array nbrList, with total count
nbrCount. When periodic boundary conditions (PBC) are used (default in DD3d), an extra layer of “virtual”
cells are allocated around the simulation box. These “virtual” cells are periodic images of “real” cells within
the simulation box. The baseIdx entry of a “real” cell is -1, while for a “virtual” cell it records the index
of the corresponding “real” cell. The offset of the (base) “real” cell from the “virtual” cell is specified by
(xShift,yShift,zShift).

Domains sharing the same cells or having cells neighboring each other are considered neighbors. In every
cycle of DD3d simulation, domains exchange nodal information in these cells with their neighbors. For
example, every remoteDomain contains a list of native cells *expCells of the current domain that needs to
be exported to this remoteDomain.

Note: A second cell structure (cell2) is implemented to facilitate segment collision detection.

7

1.4 Parameters

The *param pointer in home structure points to a structure of all control parameters for DD3d simulation.
Structure param is defined (in Param.h) as follows.

typedef enum {Periodic=0, Free=1, Reflecting=2} BoundType_t ;
typedef struct _param Param_t ;
struct _param {

/* data decomposition */
int nXcells, nYcells, nZcells ; /* numXcells, numYcells, numZcells */
int nXdoms, nYdoms, nZdoms ; /* numXdoms, numYdoms, numZdoms */

/* length and time scale */
BoundType_t xBoundType ; /* Periodic (default), Free, or Reflecting */
BoundType_t yBoundType ; /* Periodic (default), Free, or Reflecting */
BoundType_t zBoundType ; /* Periodic (default), Free, or Reflecting */
int cycleStart ; /* initial cycle number of simulation */
int maxstep; /* maximum number of cycles of simulation */
real8 timeStart ; /* starting time of simulation */
real8 timeNow; /* current time */

/* discretization control */
real8 minSeg ; /* min allowable segment length, before removing a node */
real8 maxSeg; /* max allowable segment length, before adding a node */
real8 velcutoff; /* upper bound of all segment velocities (sound barrier) */
real8 rmax ; /* maximum migration distance per timestep for any node */
real8 rann ; /* closest distance before dislocations are

* considered in contact */

/* load control */
int loadType ; /* 0 Creep

* 1 Constant strain rate
* 2 Displacement-controlled
* 3 Load-controlled, load vs. time curve */

real8 appliedStress[6]; /* applied stress when loadType = 0 */
real8 eRate ; /* strain rate when loadType = 1 */
real8 edotdir[3]; /* uniaxial loading axis companying eRate */

/* materials property */
real8 shearModulus, pois, YoungsModulus; /* elastic constants */
real8 burgMag; /* length unit */
real8 MobScrew; /* mobility of screw dislocation */
real8 MobEdge; /* mobility of edge dislocation */

/* input/output control*/
char dirname[300]; /* file directory name */
int savecn, savecnfreq, savecncounter;
int saveprop, savepropfreq, savepropdetail;
char binfile[100] ; /* binary restart (input) file name */
int binrestart ; /* 1: write binary restart file (default) or 0: not */

/* etc, etc */
...

} ;

8

Each entry in the param structure is bound to a string (in ParseControl.C) so that its value can be
specified in input script files, such as numXdoms = 4. In text restart files, the values of all variable in the
param structure written in the same format as in the input script file. Here we explain the meaning some
most important control parameters. A more comprehensive explanation of control parameters and the format
of input script files are given in Appendix A.

1. Data decomposition. nXcells, nYcells, nZcells specify the number of cells that divides the
simulation box. nXdoms, nYdoms, nZdoms specifies the number of domains (CPUs) that divide for the
simulation box.

2. Boundary condition. The boundary condition along x, y and z directions can be different. For
example, xBoundType=0 means periodic boundary (PBC) along x direction, 1 means free boundary
condition, 2 means reflecting boundary condition. So far only PBC is implemented (for all directions).

3. Cycle and time. The simulation will start at cycle cycleStart, which is probably the last cycle
of a previous simulation. The simulation will continue for another maxstep cycles and end at cycle
cycleStart + maxstep. The physical time at the beginning of simulation is timeStart. The current
time during the simulation is timeNow. Note that in each simulation step (cycle) the increment of
physical time is not necessarily the same.

4. Discretization. minSeg and maxSeg specifies how dislocation lines are meshed (in Remesh.c). If a
node is connected with an arm with length smaller than minSeg, this node is removed, provided that
it is a 2-node (node with 2 arms) and that both of its neighbors are 2-nodes. If an arm is longer than
maxSeg, a new 2-node is inserted at the mid-point of the arm. The upper bound of node velocity is
velcutoff. If a node velocity is higher than velcutoff, it is set to velcutoff. rmax specifies the
maximum distance a node is allowed to travel within one simulation step. Let vmax be the maximum
node velocity at a cycle (vmax≤velcutoff), the physical time increment of this step (realdt) must
be smaller than rmax/vmax (=deltaTT).

5. Load control. DD3d can simulate several loading conditions. If loadType=0, creep condition is ap-
plied, i.e. a constant stress is applied. The 6-component stress tensor is specified in appliedStress[6]
= (σ11, σ22, σ33, σ23, σ31, σ12) (in unit of Pa) and remains constant during the simulation. If loadType=1,
DD simulation is performed at a constant strain rate given by eRate (in unit of 1/s). Currently only
uniaxial tension/compression is implemented. The loading axis is given in Miller indices edotdir[3]
= (h, k, l).

6. Materials property. DD3d assumes isotropic linear elasticity. Shear modulus µ is given by shearModulus
(in unit of Pa); Poisson’s ratio ν is given by pois. The Young’s modulus Y (YoungsModulus) is com-
puted by Y = 2(1 + ν)µ. shearModulus and pois are used to compute elasticity driving forces on
dislocation nodes (in NodeForce.c). YoungsModulus is used in computing the necessary loading stress
in a constant strain rate loading simulation (in LoadCurve.c).

All lengths and distances in DD3d are given in unit of burgMag (b), the fundamental lattice constant
(or Burgers vector). burgMag itself is given in unit of meters. For example for BCC Mo we use burgMag
= 2.725 × 10−10 (meter), i.e. 2.725Å. Time in DD3d is given in unit of second. Thus the velocity v
has unit of b/s; dislocation mobility M = v/(τb) has unit of 1/(Pa · s). By default DD3d simulates
a BCC crystal with anisotropic mobility for edge and screw dislocations, as specified by MobEdge and
MobScrew respectively. A general dislocation with character angle θ (angle between Burgers vector ~b
and line direction ~u) has mobility MobScrew + (MobEdge−MobScrew)· cos(θ).

7. Input/output. At the beginning of the simulation, DD3d opens a subdirectory as specified by
dirname, into which all output files are written. If savecn=1, a restart file restart.cn will be
written at the end of the simulation. Moreover, intermediate restart files (e.g. rs0000, rs0001, etc.)
are written every savecnfreq cycles. savecncounter sets the counter for the first intermediate restart
files. For example, if savecncounter=20, the first restart file would be called rs0020, the next one
would be rs0021, etc.

9

Property files would be saved at every savepropfreq cycles, if saveprop=1. savepropdetail specifies
the levels of details (1-9) of the property files: 1 means a minimum amount of information, while 9
means many files will be saved.
If string binfile is not empty, DD3d will load a binary restart file (under the name specified by
binfile) after the text restart file is loaded. If binrestart=1, each restart file DD3d creates will be
accompanied by a binary restart file (using HDF5 library). If binrestart=0, no binary restart file
will be created.

Note: Moon: please clean up indxErate (outdated)now that edotdir is in place.

Note: Clean up cutoff.

Note: Clean up totalStrain, crystal replaced by mobility law, nrotload, mobility,
mobilityFlag, mobilityRatio, poleOrder, strain[6], edgeStrain[6], screwStrain[6],
trueStrain, trueStrainED, trueStrainSC, totalStress, dbt.

Note: Implement BCC mobility law based on kink energies and temperature.

Note: The previous entries nXcells, nXdoms etc in Home are now included in the *param structure.
To make cell structure compatible with periodic boundary conditions (PBC), nXcells, nYcells,
nZcells have to be all greater than or equal to 3.

Note: Tim: please clean up fixed in Divide.c. Use minSeg instead?

Note: Convert nXcells to numXcells. Convert nXdoms to numXdoms.

10

2 Algorithm Flow Chart

The main routine for DD3d simulation AAmain.c is reproduced below.

main (int argc, char *argv[]) {
Home_t *home ;
int cycleEnd;

DD3dInit(argc,argv,&home);

home->cycle = home->param->cycleStart ;
home->subcycle = 0 ;
cycleEnd = home->param->cycleStart + home->param->maxstep ;
while (home->cycle < cycleEnd) {

DD3dStep (home);
}/* end of main loop */

DD3dFinish (home);
exit (0) ;

}

The structure is very simple. It begins with initialization by DD3dInit(). It then execute DDStep() for
maxstep number of cycles. It finalizes by calling DD3dFinish().

2.1 Initialization

Function DD3dInit() is not too complicated either. It calls several more functions to do its job.

void DD3dInit(int argc, char *argv[], Home_t **homeptr) {
Home_t *home;

home = InitHome () ;
...
MPI_Init (&argc, &argv) ;
MPI_Comm_rank (MPI_COMM_WORLD, &home->myDomain) ;
MPI_Comm_size (MPI_COMM_WORLD, &home->numDomains) ;
...
Initialize (home,argc,argv) ;
...

}

Function InitHome (in InitHome.c) merely allocates memory for the pointer *home and set the nodal queue
heads to NULL. Afterwards, the MPI calls tell each CPU the index of its current domain (home->myDomain)
and the total number of domains (home->numDomains).

Function Initialize then does the real job of setting up the simulation — reading in input files, de-
composing data into domains, distributing data to all processors, and initializing other structures within
*home, such as cells and remoteDomains. Text file input and domain decomposition are handled by CPU
0. After the data is distributed to other processors, all operations are then performed in parallel. Function
Initialize is listed below.

void Initialize (Home_t *home,int argc, char *argv[]) {
if (home->myDomain == 0) { /* only CPU 0 read text input file */

...
for(i=1;i<argc;i++)

ParseControl (argv[i], inData); /* read input files */
...

11

/* decompose data only if binfile is not specified */
if ((int)strlen(param->binfile) == 0) {

...
if (param->repartition) /* re-decompose data */

Decomp (home, inData, &dComp) ;
else /* decompose data keeping old domain boundary */

OldDecomp (home, inData, &dComp) ;
...

}
}
...
/* broadcast the params to all processors */
MPI_Bcast ((char *)param, sizeof(Param_t), MPI_CHAR, 0, MPI_COMM_WORLD);

if ((int)strlen(param->binfile) > 0) {
/* if binfile exist, read binary file */
ReadBin (home, param->binfile) ;

} else {
/* otherwise send decomposed data to all domains */
InitSendDomains (home, inData, dComp, &intBuf, &intBufLen, &real8Buf,

&real8BufLen) ;
InitUnpackDomain (intBuf, intBufLen, real8Buf, real8BufLen, home) ;
...

}
InitCellNatives (home) ; /* find native cells to this domain */
InitCellNeighbors (home) ; /* find neighboring cells for each cell */
InitCellDomains (home) ; /* find domains intersecting cells */
InitRemoteDomains (home) ; /* find domains neighboring this domain */
...
OpenDir(home->param->dirname); /* open subdirectory for file output */

return ;
}

This function is a bit long but quite easy to understand. First it reads in all the text input script files.
They are passed as command line arguments when running DD3d. For example, if we run DD3d by ./dd3d
a.script b.script, then DD3d will read a.script and b.script one after the other. If no script file is
specified, DD3d will read control.script by default. The format of text script files is always varname
= value, such as numXdoms = 3 and MobScrew = 1, etc. Each assignment statement is separated from
others either by white spaces or a new line. If there are two assignment lines for the same variable, such as
numXdoms = 3 followed by numXdoms = 4, the later line overwrites the earlier line. The lines in a later script
file overwrites those in the earlier script file. In this example, numXdoms = 4 will overwrite numXdoms = 3.

After all text script files are read in, DD3d checks whether the string binfile is set. If it is, each domain
will read in its nodal data from the binary file specified by binfile. If not, CPU 0 will decompose the nodal
data it read in from the text file into domains and send them over to all the other domains. Each domain
will receive the information on the nodes within their spatial limit.

Afterwards, each domain sets up their cell structures and remoteDomain structures, and the inter-
connectivity between them. Finally, DD3d opens a subdirectory specified by dirname and direct all future
output file to this subdirectory.

12

2.2 Main Loop

After initialization, DD3d proceeds by executing DD3dStep() by a specified number (maxstep) of steps.
Function DD3dStep() is outlined below.

void DD3dStep (Home_t *home) {
...
/* Sort the native nodes into their proper cells */
SortNativeNodes (home) ;
...
/* Communicate ghost cells to/from neighbor domains */
CommSendGhosts (home) ;
...
/* Calculate the net charge tensor for each cell
* involving a global communication */
CellCharge (home) ;
...
/* Calculate force on each native node */
NodeForce (home);
...
/* Calculate velocity for each native node */
NodeVelocity (home);
...
/* Update velocities of ghost nodes */
CommSendVelocity (home) ;
...
/* Sort nodes into cell2 structures for collision detection */
SortNodesForCollision(home);
...
/* Computes time step realdt, move nodes to the next time step
* handles dislocation collision/reaction in between */
AdvanceAndReconnect (home);
...
/* Add and delete nodes to maintain a good mesh */
Remesh (home) ;
...
/* Send any nodes that have migrated out of the domain’s
* boundaries to the domain the node now belongs to. */
Migrate (home) ;
...
/* Adjust applied stress according to loading condition */
LoadCurve(home);
...
/* Write output files */
WriteStep (home) ;
return ;

}

The DD3dStep() function specifies the main flow of the program. Every time DD3dStep() is called, it goes
through 12 sub-steps and performs one computational cycle. We will briefly describes these 12 sub-steps in
the following. Some of the sub-steps, such as NodeForce, NodeVelocity, AdvanceAndReconnect, Remesh,
Migrate, LoadCurve will be described in more detail in subsequent chapters.

1. All the native nodes in the domain is queued to different cells according to their spatial distributions
by SortNativeNodes(). Each cell has a pointer *nodeQ which is the queue head. Each node has a
pointer *nextInCell that points to the next node in queue.

13

2. Each domain receives from its neighboring domains their native nodes if these nodes belongs to a cell
that are neighbors of the current domain. The communication is handled by CommSendGhosts(). After
that, these (ghost) nodes can be accessed from the nodeKeys array of the remoteDomain structures.

3. By calling CellCharge(), each domain obtain the total charge (tensor formed by Burgers vector and
line direction) from all dislocation segments within the cell. This involves a global communication and
it is not necessarily called every time DD3dStep() is called. We can do so if we assume that effects
from far away segments fluctuate less than nearby segments in neighboring cell.

4. NodeForce() computes the total driving force on every native node of the domain. For each node,
nodal contributions from 27 surrounding cells are explicitly computed. Contributions from nodes
further away lumped into total cells charges.

5. NodeVelocity() computes the velocity of each native node based on its driving force, using the default
or user-supplied mobility law subroutine. This routine is materials specific.

6. CommSendVelocity() send native node velocity to neighboring domains. After that, each domain also
knows the velocity of their ghost nodes.

7. SortNodesForCollision() then queue all the nodes in every domain to different cell2 structures,
similar to SortNativeNodes() in step 1. This prepares for the next step.

8. At this point, every domain would need to move their nodes by a distance that equals to their velocity
times a time step. In the easiest case, the time step realdt equals to deltaTT = rmax / vmax, where
rmax is the maximum distance a node is allowed to move per time step, and vmax is the maximum node
velocity. However, if dislocation segments collide within deltaTT, then the real time step realdt may
need to become smaller. AdvanceAndReconnect() first predicts whether or not dislocation segments
will collide with each other during period [0, deltaTT]. If they do, it tries to handle as many of them
as possible. If AdvanceAndReconnect fails to handle all the events, the time step will be adjusted to
the time of first event it fails to handle.

9. Remesh() adjusts the discretization of dislocation lines. If a node is connected with an arm with length
smaller than minSeg, this node is removed, provided that it is a 2-node (node with 2 arms) and that
both of its neighbors are 2-nodes. If an arm is longer than maxSeg, a new 2-node is inserted at the
mid-point of the arm. Neighboring domains will do the same adjustments to their ghost nodes (after
communication) to maintain consistency.

10. After advancing all the nodes according to their velocities, some nodes may go out of the boundary of
its original native domain and become native to another domain. Migrate() sends these nodes to the
new domain and the original native domain will mark these nodes as ghosts.

11. LoadCurve() adjusts the loading stress if the applied loading condition is not creep. For example, if
constant strain rate is applied, the applied stress will be the difference between the applied strai and
the current plastic strain, multiply the elastic constants.

12. WriteStep() writes property files such as dislocation density, stress-strain data at specified frequency
during the simulation. It also writes restart files periodically.

14

3 Node Force

There are many ways to represent a continuous line in a computer: different choices in doing so correspond
to different approximations being made. A certain choice may be suited for a certain type of applications,
but it might simply reflect the personal taste of the modeler as well.

A simple way is to represent dislocations as a set of “nodes” interconnected by straight arms, as shown
in Fig. 3, each arm representing a dislocation segment. While the nodes can move, each arm is associated
with a Burgers vector that remains constant, until the destruction of the arm due to dislocation reaction.
The definition of dislocation Burgers vector depends on the choice of line direction. For example, let ~b01 be
the Burgers vector of the arm going from node 0 to node 1, and let ~b10 be the Burgers vector of the same
arm going in the reverse direction, we have ~b01 +~b10 = 0. In this way, the total Burgers vector of all arms
going out of any given node is zero, e.g. ~b01 +~b02 +~b03 = 0.

0

2

1

4

5

3
6

b01
b10

b14

b41

b02

b20

b25b52

b03b30
b36

b63 b01
b02

b03

Figure 3: Dislocation network represented as a set of “nodes” (empty circles) interconnected by straight
segments (see text).

Under this convention, a dislocation can be uniquely specified by a set of nodes {Ni}, each described
by its location ~ri and connectivity with other nodes, i.e. Ni =

[
~ri; ~bij , (j = 1, · · · , ni)

]
, where ni is the

connectivity (number of arms) of node i. Let E({Ni}) be the total elastic energy of dislocation network.
The driving force on node i can be rigorously defined as,

~fi = −∂E({Ni})
∂~ri

(1)

In other words, the driving force ~fi equals to the rate of total energy drop (−dE/d~ri) of the dislocation
network in response to an infinitesimal (virtual) displacement (d~ri) of node i, while keeping the topology
(Burgers vectors of all arms) and positions of all other nodes constant.

The total elastic energy can be written as the sum of the self energies of all dislocation segments, and
the mutual interaction energies between each segment pairs, such as

E({Ni}) = WS(01) + WS(14) + WS(02) + · · ·
+WI(01, 14) + WI(01, 02) + WI(02, 25) + · · ·

=
∑
〈i,j〉

WS(ij) +
1
2

∑
〈i,j〉;〈k,l〉

WI(ij, kl) , (2)

where WS(ij) is the self energy of segment 〈i, j〉, WI(ij, kl) is the interaction energy between segments 〈i, j〉
and 〈k, l〉. In isotropic linear elasticity, analytical formula have been derived for both WS(i, j) and WI(ij, kl),
for arbitrary segment orientation and Burgers vectors. Therefore, at least in principle, the driving force on

15

node i can be evaluated by summing up the derivatives of every term in Eq. (2) with respect to ~ri. Of course,
only those terms that involve node i will make non-zero contribution.

For example, let ~L = ~r1 − ~r0 (L = |~L|) and ~b = ~b01 (b = |~b|), the self energy of segment 〈0, 1〉 is,

WS(01) = WS(~L,~b) =
µ

4π

(
b2
s +

b2
e

1− ν

)
L ln

L

erc
(3)

where bs and be are screw and edge components of the Burgers vector: bs = |~b · ~L|/L, be = (b2 − b2
s)

1/2. µ
is the shear modulus and ν is the Poisson’s ratio of the material. rc is the cut-off radius for the dislocation
core. It is an undetermined parameter within the elasticity theory of dislocations. It can be pinned down by
equating the total elastic energy of a given dislocation configuration (which depends on rc) with the total
energy of the same configuration in an atomistic simulation (see Chapter 3). rc is typically on the order of
0.1b.

The driving force contribution on node 1 due to the self energy of segment 〈0, 1〉 is,

−∂WS(01)
∂~r1

= êL ·
[
− µ

4π

(
b2
s +

b2
e

1− ν

)
ln

L

rc

]
(4)

+ êθ ·
[

µ

4π

(
2bsbeν

1− ν

)
ln

L

erc

]
(5)

where êL = ~L/L is the unit vector along the segment direction, and êθ ‖ ~b − (~b · êL)êL is the other unit
vector on the plane containing both ~L and ~b.

Hence we have obtained the self energy contributions to the nodal driving force. On the other hand, the
interaction energy WI between two generally orientated dislocation segments with arbitrary Burgers vectors
is very complicated. For two general dislocation lines C(1) and C(2), with Burgers vectors ~b(1) and ~b(2), their
interaction energy can be expressed as,

W12 = − µ

2π

∫
C(1)

∫
C(2)

(~b(1) ×~b(2)) · (d~l(1) × d~l(2))
R

+
µ

4π

∫
C(1)

∫
C(2)

(~b(1) · d~l(1))(~b(2) · d~l(2))
R

+
µ

4π(1− ν)

∫
C(1)

∫
C(2)

(~b(1) × d~l(1)) · T · (~b(2) × d~l(2))

(6)

where R =
(∑3

i=1(x
(1)
i − x

(2)
i)2

)1/2

, Tij = ∂2R/∂x
(2)
i ∂x

(2)
j . When C(1) and C(2) are straight lines, analytic

formula can be derived by performing the integrals. In principle, one can then differentiate W12 with respect
to ~r1 by brute-force. However, the analytic form of ~f1 thus obtained will be very complicated and numerically
unstable.

Intuitively, the “local stress” (σloc) at the dislocation segment provides the driving force for dislocation
motion, according to the Peach-Koehler formula ~f = (~b · σloc)× ~L. The “local stress” is the superposition of
the externally applied stress σext and the internal stress produced by all other dislocation segments. Since
the stress formula for arbitrary dislocation segments is easy to implement, most of the existing DD codes
computes driving forces by computing this “local stress”. Unfortunately, there has been much controversy
and inconsistency in this type of approaches: because the stress field of a dislocation segment diverges as one
approaches the segment itself, a neighboring segment would contribute to an infinitely large driving force to
the segment of study. Besides, it is not clear why the self-energy contribution [Eq. (5)] should be arbitrarily
ignored. To make the total driving force finite, it has been common practice to truncate the neighboring
segments with an ad hoc truncation parameter. As we will see, all of these are unnecessary. Based on Eq. (1),
the nodal driving force is well defined and stays finite, and can be computed without ambiguity. Below we
will show the connection between the nodal driving force and the “local stress” field.

Consider the case where both lines C(1) and C(2) form complete loops. In this case, W12 equals to the
integration of the stress field of loop 2 (σ(2)) over the area of loop 1 (A(1)), times the Burgers vector of loop

16

1 (b(1)), i.e.

W ◦
12 =

∫
A(1)

dA
(1)
β b(1)

α σ
(2)
αβ (7)

Here we use W ◦
12 (instead of W12) to indicate the requirement that both C(1) and C(2) should be complete

loops for Eq. (7) to be valid. The stress field from dislocation C(2) is given by

σ
(2)
αβ = − µ

8π

∮
C(2)

b(2)
m εimα

∂

∂x
(2)
i

∇2Rdx
(2)
β

− µ

8π

∮
C(2)

b(2)
m εimβ

∂

∂x
(2)
i

∇2Rdx(2)
α

− µ

4π(1− ν)

∮
C(2)

b(2)
m εimk

(
∂3R

∂x
(2)
i ∂x

(2)
α ∂x

(2)
β

− δαβ
∂

∂x
(2)
i

∇2R

)
dx

(2)
k

(8)

where ∇2 =
∑3

i=1 ∂2/∂x
(2)
i ∂x

(2)
i . However, if C(2) is not a complete loop, W12 no longer satisfies Eq. (7).

Instead, one can show that

W12 = W ◦
12 + W †

12 (9)

W †
12 ≡ − µ

4π

∫
A(1)

d ~A(1) · (~b(1) ×~b(2)) ·
(

1
|~r(1) − ~rb|

− 1
|~r(1) − ~ra|

)
(10)

where ~ra and ~rb are the starting and ending point of curve C(2), respectively.

0

1

C(1)

C(2)

a

b

1'dr

L

Figure 4: Computing the driving force on node 1 due to the interaction between segments 〈0, 1〉 and 〈a, b〉.

Let us now compute the nodal driving force contribution from the interaction between two straight
dislocation segments, 〈0, 1〉 and 〈a, b〉, as shown in Fig. 4. Consider a virtual move of node 1 from ~r1 to
~r′1 = ~r1 + d~r, and consider the complete loop thus formed: C(1) = (0 → 1 → 1′ → 0). Let C(2) = 〈a, b〉.
The interaction energy between C(1) and C(2) can be described by Eq. (9),

W12 =
∫

A(1)
d ~A(1) · (~b(1) · σ(2)) + W †

12 (11)

At the same time, the interaction energy between C(1) and C(2) can be decomposed into segment-segment
interactions,

W12 = WI(01, ab) + WI(11′, ab) + WI(1′0, ab) (12)

17

Therefore, the driving force on node 1 is

~f1 = −(WI(01′, ab)−W (01, ab))/d~r

= W12/d~r −WI(11′, ab)/d~r

= W ◦
12/dr + W †

12/d~r −WI(11′, ab)/d~r

We can separate ~f1 into several parts,

~f1 = ~fσ
1 + ~f corr

1 (13)
~fσ
1 ≡ W ◦

12/d~r (14)
~f corr
1 ≡ ~f corr1

1 + ~f corr2
1 (15)

~f corr1
1 = W †

12/d~r (16)
~f corr2
1 = −WI(11′, ab)/d~r (17)

Because the area A(1) enclosed by loop C(1) is a triangle, we have,∫
A(1)

d ~A(1) =
∫ L

0

dx
x

L
(ê01 × d~r) (18)

where L = |~L|, ~L = ~r1 − ~r0, ê01 = ~L/L. Therefore,

~fσ
1 =

∫ L

0

dx
x

L

[
(~b(1) · σ(2)(x))× ê01

]
(19)

Therefore, the first term in Eq. (13) (~fσ
1) accounts for the effect of “local stress”, while the second term

(~f corr
1) is a correction term (due to the fact that neither of the two dislocation segments are complete loops)

previous not appreciated. Furthermore, ~fσ
1 is similar to, but not exactly the same as the Peach-Koehler

formula (~f = (~b · σloc) × ~L). Instead of being proportional to the total stress (due to C(2)) along segment
〈0, 1〉, ~fσ

1 is proportional to the weighted (by x) average of the stress field σ(2)(x) along the segment. In
other words, it is proportional to the total torque that the stress field exerts on the segment 〈0, 1〉 around
node 0.

Based on Eq. (10), the first correction term is

~f corr1
1 = − µ

4π

∫ L

0

dx
x

L

[
(~b(1) ×~b(2))× ê01

](1
|~r(1) − ~rb|

− 1
|~r(1) − ~ra|

)
(20)

To compute the second correction term ~f corr2
1 , we notice that WI(11′, ab) is the interaction energy between

a differential segment d~r with a straight segment 〈a, b〉. From Eq. (6), we obtain

~f corr2
1 = −WI(11′, ab)/d~r

=
µ

2π

∫ L2

0

dx2
(êab × (~b(1) ×~b(2)))

R

− µ

4π

∫ L2

0

dx2

~b(1) (~b(2) · êab)
R

− µ

4π(1− ν)

∫ L2

0

dx2(∇∇R · (~b(2) × êab))×~b(1) (21)

where L2 = |~L2|, ~L2 = ~rb − ~ra, êab = ~L2/L2, and R = |~ra + êabx2 − ~r1|.
Equations (19) (20) and (21) describe how to compute the nodal driving force due to the interaction

between any two segment pairs. Below we will show that it also applies to the situation when the two
segments share a common node: the stress field from each segment diverges at the common node, but the

18

0

2

1

b01

b02

x

L

σ(
x) ∼1
/x

x

Figure 5: Interaction between two segments sharing a common node.

driving forces on all three nodes remain finite. As shown in Fig. 5, node 0 is connected with both node 1
and node 2. Let us examine the driving forces on all three nodes due to the interaction between 〈0, 1〉 and
〈0, 2〉.

Let σ〈0,2〉(x) be the stress field of segment 〈0, 2〉 on segment 〈0, 1〉. σ〈0,2〉(x) diverges as x → 0 as 1/x.
However, ~fσ

1 remains finite, because

~fσ
1 ∝

∫ L

0

dx · x · σ〈0,2〉(x) (22)

The weight x cancels the singular term 1/x in σ〈0,2〉(x). One can easily check that ~f corr
1 and hence ~f1 =

~fσ
1 + ~f corr

1 also remain finite. Similarly, ~f2 is finite too. Due to translational invariance, the driving force on
node 0 is simply ~f0 = −~f1 − ~f2.

Operationally, ~fσ
1 can be computed by numerical integration: we evaluate the stress field at several

sampling points due to the other segment and compute their weighted average. On the other hand, analytical
formula can be obtained for the correction term ~f corr

1 , by performing the integrals in Eq. (20) and (21). ~f corr
1

can simply be computed as a function of ~r0, ~r1, ~ra and ~rb.
We should notice that the correction terms tend to cancel each other once we sum up the different

contributions to the driving force of a given node, say node 0. For brevity, let us call segments that are
connected with node 0 local segments, and other segments remote segments.

1. The first correction term ~f corr1
0 vanishes when we sum up the interactions between a local segment and

remote segments that happen to form a closed loop.

2. The second correction term ~f corr2
0 vanishes once we sum up the interactions between a remote segment

with all local segments, because the Burgers vector of local segments sum to zero.

Therefore, when computing the driving force of node 0, an economic way is to first evaluate and sum up ~fσ
0

contributions from different segment pair interactions, and add the unbalanced correction terms at the end.
There are two and only two places where unbalanced correction terms appear.

1. Let us first consider the interactions between local segments and remote segments. As stated above,
when all these contributions are summed together, ~f corr2

0 = 0. However, ~f corr1
0 6= 0, because the collec-

tion of all remote segments does not form a complete dislocation loop (assuming the entire dislocation
network can be decomposed into completed loops, but now the local segments are excluded). We
can make them a complete loop by adding auxiliary dislocations lines that goes from infinity to the
neighbors of node 0 (opposite to the dashed lines in Fig. 6). Hence the sum of ~f corr1

0 terms between
all remote and all local segments equals to the sum of ~f corr1

0 between the semi-infinite segments in
Fig. 6 and all local segments of node 0. Notice that ~f corr1

0 is non-zero only when two segments have

19

0

2

1

3

infinity

infinity

infinity

b01

b02b03

b01

b02

b03

Figure 6: Cancellation of the correction terms ~f corr1
0 by introducing auxiliary semi-infinite dislocation lines

(see text).

different Burgers vectors. Therefore this correction is zero for all nodes with two arms. We only need
to compute ~f corr1

0 for nodes with three or more neighbors.

2. When computing the contributions from interactions between local segments, node 0 becomes the
common node for every pair of local segments. In order to use the translational invariance property
~f0 = −~f1 − ~f2, ~fi (i = 1, 2) should contain both ~f corr1

i and ~f corr2
i .

The analytic form of stress field σ(2)(x) of a general straight dislocation segment with arbitrary Burgers
vector (from which we compute ~fσ

1 by numerically integrating Eq. (19)) is available from standard text books
of linear elasticity. Below we give the analytic forms of the correction terms ~f corr1

1 and ~f corr2
1 .

From Eq. (20), ~f corr1
1 can be written as,

~f corr1
1 (~r0, ~r1;~ra, ~rb) = ~f corr1

1 (~r0, ~r1;~rb)− ~f corr1
1 (~r0, ~r1;~ra) (23)

As shown in Fig. 7(a), we choose the coordinate system such that node 0 sits at origin, node 1 sits on the x
axis, and node b sits on the x-y plane [at coordinate (xb, yb)]. Then,

~f corr1
1 (~r0, ~r1;~rb) = −µ(~b(1) ×~b(2))× êx

4πL

∫ L

0

x dx√
(x− xb)2 + y2

b

= −µ(~b(1) ×~b(2))× êx

4πL

(
R1b −R0b + xb ln

R1b + L− xb

R1b − xb

)
(24)

where R1b =
√

(L− xb)2 + y2
b (R0b =

√
x2

b + y2
b) is the distance between node 1 (node 0) with node b.

To compute ~f corr2
1 , we choose the coordinate system as shown in Fig. 7(b). Node 1 is at the origin. Node

a and b lies in the x-y plane and along the x axis. Let the coordinates of node a and b be (xa, y) and (xb, y)
respectively. Based on Eq. (21), ~f corr2

1 can be written as,

~f corr2
1 =

[µ

2π
(êx × (~b(1) ×~b(2)))− µ

4π
(~b(2) · êx)~b(1)

] ∫ xb

xa

dx√
x2 + y2

20

L

0

1

b(1)

b(2)a

b

x

y

(xb,y
b)

x
y

L

0

1

b(1)

b(2)a

b

(xb,y)

(xa,y)

(a) (b)

Figure 7: Geometry for computing (a) ~f corr1
1 and (b) ~f corr2

1 .

− µ

4π(1− ν)

[
(~b(2) × êx) ·

∫ xb

xa

dx∇∇ 1√
x2 + y2 + z2

]
×~b(1) (25)

We can make use of the following identities,∫ xb

xa

dx√
x2 + y2

= ln
R1b + xb

R1a + xa

(
= ln

R1a − xa

R1b − xb

)
where R1b =

√
x2

b + y2 (R1a =
√

x2
a + y2) is the distance between node b (node a) and node 1. Because

z = 0, we also have,

∇∇ 1√
x2 + y2 + z2

=

 1
R − x2

R3
−xy
R3

−xz
R3

−xy
R3

1
R − y2

R3
−yz
R3

−xz
R3

−yz
R3

1
R − −z2

R3

 =

 y2

R3
−xy
R3 0

−xy
R3

x2

R3 0
0 0 1

R


where R =

√
x2 + y2. Different components of this matrix can be integrated out separately,∫ xb

xa

dx

R3
=

x

y2R

∣∣∣∣xb

xa∫ xb

xa

xdx

R3
= − 1

R

∣∣∣∣xb

xa∫ xb

xa

x2dx

R3
=

[
ln(R + x)− x

R

]xb

xa

Therefore,

~f corr2
1 =

[µ

2π
(êx × (~b(1) ×~b(2)))− µ

4π
(~b(2) · êx)~b(1)

]
ln(R + x)|xb

xa

− µ

4π(1− ν)

(~b(2) × êx) ·

 x/R y/R 0
y/R ln(R + x)− x/R 0
0 0 ln(R + x)

xb

xa

×~b(1)

(26)

Please notice that in Eq. (24) and (26) the choices of coordinate system are different.

21

4 Mobility Laws

We have seen that the driving forces on dislocations can be rather complicated to compute, as compared with,
say, atoms in Molecular Dynamics simulations. At the same time, the equation of motion for dislocation
lines is by no means as simple as that for atoms either. The Newton’s equation of motion for atoms
(~f = m~a) is completed specified by a single parameter, the atomic mass m, once the driving force ~f is
known. The equation of motion for dislocations, on the other hand, is much more complicated for several
reasons. First, dislocations are line-like (1-dimensional) objects, as compared with atoms, which are point-
like (0-dimensional) objects. Second, dislocation’s response to driving forces can be very anisotropic with
respect to the glide plane (the plane defined by the line direction and the Burgers vector): motion out of
the glide plane (climb) is much more difficult than motion within the glide plane.

Under conventional loading conditions, dislocation motion can usually be regarded as being over-damped:
the inertia effect can be safely ignored. In this case, the equation motion becomes first order: ~v = M(~f).
The mobility function M specifies the instantaneous velocity ~v of dislocation in response to the driving force
~f . While being first order is somewhat simpler than the (second order) Newton’s equation of motion, the
mobility function M however, can be quite complicated.

Model FCC Mobility Law
Let us start with the simplest possible mobility function that mimics the behavior of real dislocations. In

this case, we assign every dislocation segment a glide plane, and confine its motion entirely within its glide
plane. Because a discretization node is meant to be a sampling point on a dislocation line, its two arms must
have the same glide plane, which is the plane on which the node itself is confined to move.

0 2

1

vn

vt

L

L10 L12
θ φ

0

2
1

n10

v

n12

L10

L12

θ φ

(a) (b)

Figure 8: (a) Velocity of discretization node 1. The glide plane of both arms of node 1 (~n10 and ~n12) are the
same as the plane of the paper. (b) Velocity of physical node 1.

As shown in Fig. 8(a), there are two independent directions in this plane, and our mobility law needs to
specify the node velocity in this two directions: vn for motion normal to the “local tangent” and vt for motion
along the “local tangent”. For simplicity, we can set vt ≡ 0, because for a line only motion perpendicular to
itself is physical. However, we can also assign non-zero values for vt such that the meshing of the dislocation
line is automatically adjusted (e.g. to maintain approximately equal segment lengths, see Problem 1).

Let fn be the projection of nodal driving force ~f1 along the “normal” direction and L be the distance
between node 0 and node 2. fn/(L/2) thus represents the average force (per unit length) on dislocation line
around node 1. The simplest mobility law one can construct is to have dislocation velocity proportional to
the force per unit length:

vn = Mfn/(L/2) = 2Mfn/(L10 sin θ + L12 sinφ) (27)

In DD simulations, we will encounter not only discretization nodes, but also physical nodes, which can
be the place where a dislocation line bends sharply around a corner (Fig. 8(b)), or where three dislocation
lines meet. An often encountered situation is that the arms of the physical node have different glide planes.
In this case, the node velocity has to simultaneously satisfy several glide constraints. If there are two linearly

22

independent glide plane normal directions, such as in Fig. 8(b), the nodal velocity has to be aligned along
the intersection line between the two glide planes. Let f be the nodal force component along this direction.
The magnitude of nodal velocity can be evaluated as,

v = 2Mf/(L10 sin θ + L12 sinφ) (28)

(what if physical nodes able to move in 2- or even in 3 dimensions? A good remeshing is important,
especially around a physical node: to have approximately equal arm lengths around a physical node.)

Implementation of the mobility law described above requires the knowledge the glide plane normal vector
for every dislocation arm. This can be set in the initial condition and remain fixed during the simulation.
When a new discretization node is inserted in an arm during remeshing, the two new segments will inherit
the glide planes of the original segment. However, when new dislocation segments are created by dislocation
reaction, additional rules must be supplied to specify their glide planes. Below we give an example of such
rules.

1. Let ~l be the unit vector of the line direction of the dislocation segment and ~b be its Burgers vector. If
|~l ×~b| ≥ ε, (e.g. ε = 0.001) the glide plane normal is ~n = ~l ×~b/|~l ×~b|.

2. When |~l ×~b| < ε, i.e. ~l and ~b are almost parallel, the above procedure is numerically unstable. This
is a manifestation of the fact that a screw dislocation can principally move in multiple planes. Choose
~n randomly from a pre-specified table of glide plane normals {~ni} for screw dislocations with Burgers
vector ~b.

In last step above, the choice of ~n out of table {~ni} may not be completely random: the probability could
be weighted by the projection of the nodal driving force on different candidate planes (see Problem 2).

In the mobility law above, every dislocation segment has a glide plane, even for screw dislocations. This
mimics the dislocations in FCC metals, in which dislocations are dissociated into partials bounding an area
of stacking fault on {111} planes. Therefore, all dislocations (with Burgers vector 1

2 〈110〉) are confined to
move on {111} planes. On the other hand, screw dislocations can change its glide plane from one {111}
plane to another. Such rare cross-slip events are the result of thermal fluctuation and possibly a change of
the nodal driving force (see Problem 2).

Model BCC Mobility Law
Let us now explore alternative choices of simple mobility functions. We have just considered an extreme

case where even screw dislocations have a glide plane. We need to remind ourselves that the cause of this
phenomena – planar dissociation of dislocations – occurs in FCC metals but is not generally true for all
materials. For example, screw dislocations in BCC metals have a compact core and are found to move
in arbitrary directions at high temperatures, both in experiments and in direct atomistic simulations (see
Chapter 3). Such behavior is called “pencil-glide”. In the following we explore the proper mathematical
forms for the mobility function to describe pencil-glide.

Let us first consider the mobility function for a segment: ~v = M(~f). This applies to discretization nodes
with nodal force ~fn: as shown in Fig. 8 ~fn/(L/2) approximating the force per unit length is used in the
above mobility function.

Here we completely abandon the notion of a glide plane. The mobility function is hence stateless: the
driving force completely determines the dislocation velocity. More specifically, the dislocation velocity only
depends on the relative direction of the dislocation segment w.r.t. its Burgers vector, and of course, the
driving force.

As shown in Fig. 9, let θ be the angle between ~b and ~l, and φ be the angle between the glide plane formed
by ~b and ~l (normal vector ~n) and a reference direction in the crystal. Therefore the mobility function can be
written as ~v = M(~f, θ, φ). Furthermore, because motion along the dislocation line itself is unphysical, both
~v and ~f are two dimensional vectors in the tangent plane of the unit sphere, spanned by ~n and ~t = ~l × ~n.

For simplicity, we ignore the dependence on φ, i.e. we assume the mobility is isotropic w.r.t. the
orientation of the glide plane. Dislocation mobility is then only a function of the character angle θ.

Define fn = ~f · ~n, ft = ~f · ~t, vn = ~v · ~n, vt = ~v · ~t. fn and vn are the climb force and velocity, i.e.
for motion out of the glide plane, while ft and vt are glide force and velocity, i.e. for motion within the

23

Figure 9: Generalized mobility function ~v = M(~f, θ, φ). Both ~v and ~f are two dimensional vectors in the
tangent (shaded) plane spanned by ~n and ~t.

k

θ

t
v

j

n

f

(a) (b)

Figure 10: Constructing generalized mobility function by considering the behavior of dislocations in the
vicinity of screw orientation (θ ∼ 0).

glide plane. For edge dislocations (θ = 90◦) the dislocation mobility along these two directions are very
different: Mg/Mc � 1, where Mg = vt/ft and Mc = vn/fn. On the other hand, the mobility for screw
dislocation is isotropic for pencil glide. In fact, when ~b ‖ ~l, we are no longer able to define vectors ~n and ~t, in
order to differentiate “glide” and “climb” directions. For screw dislocations (θ = 0◦), we assume ~v = Ms

~f .
For all other orientations (mixed dislocations), the mobility function changes smoothly from that of edge
to screw. Let us now construct the simplest mobility function of this kind, described by three parameters
(Mg > Ms > Mc).

Consider mixed dislocations in the vicinity of screw orientation (θ ∼ 0). As shown in Fig. 10(a), it can be
regarded as long screw segments connected by short edge segments. Each edge segment is an atomic sized kink
with height h. Assume for the moment that the screw segments cannot move (Ms = 0), while the kinks move
with velocity vk. Let L be the average distance between kinks. If the kinks move laterally by L, the entire
dislocation moves forward (along ~t) by h. Thus the dislocation glide with velocity v = vkh/L = vk sin θ.
Let Mk = vk/ft be the mobility of kinks, then the glide mobility of the dislocation can be written as
Mt(θ) = Mk sin θ (if Ms = 0). In general Ms is finite and both the screw and edge segments contribute to
dislocation mobility, which can be written as,

Mt(θ) ≡ vt/ft = (M2
k sin2 θ + M2

s)1/2 (29)

Now consider the motion of the dislocation perpendicular to the glide plane, i.e. along normal direction
~n, as in Fig. 10(b). For the moment assume screw segments can move with zero resistance 1/Ms = 0,
while all the resistance comes from the climb motion of edge segments. In this orientation, the kinks in
Fig. 10(a) are called “jogs”. Let fj be the drag force that each jog produces while moving with velocity vn

and Mj = vn/fj be the jog mobility. The average drag force per unit length on the dislocation is fj sin θ

24

which must be balanced by the climb driving force fn. Therefore, the drag coefficient (inverse of mobility)
is 1/Mn(θ) = sin θ/Mj . In general when 1/Ms is finite, both jog and screw segments produce drag forces
during motion,

1/Mn(θ) ≡ fn/vn = (sin2 θ/M2
j + 1/M2

s)1/2

Mn(θ) = (M−2
j sin2 θ + M−2

s)−1/2 (30)

To ensure that when θ = 90◦, Mt(θ) = Mg and Mn(θ) = Mc, we have,

Mk = (M2
g −M2

s)1/2

Mj = (M−2
c −M−2

s)−1/2

Therefore, the mobility function ~v = M(~f) can be written explicitly as,

~v =
[
Mt(θ)~t⊗ ~t + Mn(θ)~n⊗ ~n

]
~f

= Mt(θ)~f − [Mt(θ)−Mn(θ)] (~n · ~f)~n (31)

Notice that ~b×~l = ~n sin θ, we have

~v = Mt(θ)~f − Mt(θ)−Mn(θ)
sin2 θ

[
(~b×~l) · ~f

]
(~b×~l)

≡ Mt(θ)~f − g(θ)
[
(~b×~l) · ~f

]
(~b×~l) (32)

One can show that function g(θ) is well defined and continuous for all θ and g(0) = 1
2Ms

[
(Mk/Ms)2 + (Ms/Mj)2

]1/2

(Problem 3).
Eq. (32) specifies the mobility of a generally orientated dislocation segment. This mobility function is

completely specified by three parameters: Mg (edge glide mobility), Mc (edge climb mobility) and Ms (screw
mobility). By setting Mc � Ms < Mg, we effectively confine the motion of mixed dislocations to move on
the glide plane containing both ~b and ~l.

Because motion of screw dislocation is completely unconstrained (it simply follows the driving force
direction), this mobility law corresponds to the behavior of high temperature behavior of BCC metals where
“pencil-glide” of screw dislocations are observed. At low temperatures, screw dislocation in BCC metals still
prefer to move along crystallographic planes (e.g. (110) intersecting the 1

2 〈111〉 Burgers vector). planes, even
though it is not dissociated (hence confined) in any plane. To describe such behavior, the mobility function
must depend on φ in Fig. 9 as well (Problem 4).

The above mobility function can be directly used to compute velocity of discretization nodes. The input
of the mobility function is force per unit length, which is nodal force divided by the average length of the
two arms [L/2 in Fig. 8(a)]. For discretization nodes, the (could be more than three) arms of the node may
have different mobility functions and have to be taken into account separately. Take the configuration in
Fig. 8(b) as an example, the velocity of node 1 can be obtained by solving the following set of equations,

~v = M01(~f01)

~v = M12(~f12)
~f = ~f01L01/2 + ~f12L12/2 (33)

When the mobility functions have the tensor form as in Eq. (32), we can solve for ~v as

~v =
(

2
L01

M−1
01 +

2
L12

M−1
12

)−1

~f (34)

where (·)−1 corresponds to matrix inversion.

25

5 Event Detection and Handling

The previous section described how DD3d calculates the velocity (vi) of every node at the beginning of each
iteration. If one takes a fixed value of timestep (∆t) and advance each node by vi · ∆t, it is the possible
that some segments will cut through each other, which would be unphysical. A realistic simulation will need
to detect the occurrence of such (contact) events and change the topology (line connection) of dislocations
according to physical laws. This is handled by function AdvanceAndReconnect, as listed below,

void AdvanceAndReconnect (Home_t *home) {
param = home->param;
...
/* detect possible segmental collisions, arrange segment pairs

(nodal quadrupoles) according to projected time */
DetectAllEvents (home);

/* select the earliest event among all domains */
SelectEvent (home) ;

/* move all the nodes by time param->realdt */
AdvanceAllNodes (home) ;

/* Calculate the plastic strain increment */
DeltaPlasticStrain (home) ;
...
/* execute the selected event */
ExecuteEvent (home) ;
return;

}

Function DetectAllEvents first predicts whether, when and where collisions will occur. The earliest event
is then selected (by SelectEvent) whose time then replaces the timestep. AdvanceAllNodes then move
all the nodes by this time, so that the predicted colliding segments will be just touching each other. Line
reconnection is then handled by ExecuteEvent. This section will discuss the detection algorithm in DD3d.
The topology handling (line reconnection) will be discussed in the next section.

5.1 Four Types of Events

If all nodes are moving with constant velocities, then four types of topological events could occur in the
time window of [0,∆t], as shown in Fig. 11. Type (1) is the most general case, in which two segments that
previously were not in contact come into contact. We also call type (1) event a “collision” event. A type
(2) event corresponds to two segments that shared a common node become overlap on each other, and we
also call it a “zipping” event. In type (3), the length of a segment shrink down to zero, and we call it a
“shrinking” event. A type (4) event describes a 4-node dissociates into two 2- or 3-nodes, and we call it a
“dissociation” event. The current version of DD3d does not handle type (4) event. We will neglect it in
our discussion from now on. DetectAllEvents calls four other functions to detect each of the four types of
topological events.

void DetectAllEvents (Home_t *home) {
ClearEventList (home) ;

/* Type 1 events */
DetectCollision (home) ;

/* Type 2 events */
DetectZipping (home) ;

26

1

3 4

2

1
3

2

1 2

1
3

2
3

1

2

4

1

(1) (2) (3)

1

(4)

Figure 11: Four types of topological events possible in DD3d simulation.

/* Type 3 events */
DetectShrinking (home) ;

/* Type 4 events */
Detect4NodeDissociation (home) ;

}

For example, function DetectCollision loops through all segment pairs that are not connected with
each other, and compute whether or not they will come in contact during [0,∆t]. Function DetectZipping
loops through all nodes and check whether it has to arms that will become overlapped. DetectShrinking
loops through all segments and check whether their length will shrink to zero, etc. Whenever an event is
detected, an entry is added to the EventList, which is an array of the following structure, as specified by
Topology.h.

struct _topevent {
int type ;
int dom1, idx1, dom2, idx2;
int dom3, idx3, dom4, idx4;
real8 tp ;
real8 alpha, beta, x, y, z ;

} ;

The first entry of the topevent structure specifies the event type (1-4). The next 8 integers specify the
nodes involved in this event. tp is the predicted time of this event, (0 ≤ tp ≤ ∆t). alpha, beta, x, y, z
specifies the spatial location of this event. For example, in a type (1) event, the collision point r = (x, y, z)
is given by r = (1− α)r1 + αr2 = (1− β)r3 + βr4.

It turns out that only a general algorithm that can detect type (1) collision is needed, because type (2)
and (3) events can be considered as degenerate cases of type (1). Similarly, the procedure that handles type
(1) collision can be easily adapted to handle type (2) and (3) events, as will be discussed in Section 5.

It is a complex computational geometry problem to determine whether, when and where two line segments
will come into contact, given arbitrary initial position and velocity of the four end nodes. The following
subsection will discuss the algorithm used in DD3d to solve this problem.

27

5.2 Event Detection

5.3 Event Handling

Need to Write: ExecuteEvent() in EventHandle.c

void ExecuteEvent (Home_t *home) {
domid = home->selectevdom ;
evid = home->selectevid ;
ClearOpList (home);
if(evid<0) return ; /* no event */
...
if(type == 1)
{/* Collision, type = 1 */

...
if(...)

if(...)
HandleNodeNodeCollision (home,nodeA,nodeB);

else
HandleNodeSegCollision (home,nodeA,node3,node4);

else
if(...)

HandleNodeSegCollision (home,nodeB,node1,node2);
else

HandleSegSegCollision (home,node1,node2,node3,node4);
}
else if(type == 2)
{

if(...)
HandleNodeNodeCollision (home, node2, node3);

else if (...)
{

...
HandleNodeSegCollision (home, node2, node1, node3);

}
...

}
else if(type == 3)
{

HandleNodeNodeCollision (home, node1, node2);
}
...

}

void HandleSegSegCollision (Home_t *home, Node_t *node1,
Node_t *node2, Node_t *node3, Node_t *node4)

{
...
node5 = InsertNewNode (home, node1, node2, x, y, z, 1) ;
node6 = InsertNewNode (home, node3, node4, x, y, z, 1) ;
HandleNodeNodeCollision (home, node5, node6);

}

28

void HandleNodeSegCollision (Home_t *home,
Node_t *node2, Node_t *node3, Node_t *node4)

{
...
node6 = InsertNewNode (home, node3, node4, x, y, z, 1);
HandleNodeNodeCollision (home, node2, node6);

}

void HandleNodeNodeCollision (Home_t *home, Node_t *node2, Node_t
*node4) {

/* remove all arms from node2 to node4 */
ChangeArmBurgID (home, node2, node4, -1, 1);

/* Redirect all connections with node4 to node2, delete node4 */
for(j=0;j<node4->numNbrs;j++)
{

...
ChangeConnection (home, nbr, node4, node2, 1);
InsertArm (home, node2, nbr, bid, 0, 0, 0, 1);

}
RemoveNode (home, node4, 1) ;

/* Check whether node2 has arms linking to the same neighbor
* combine these arms */

for(j=0;j<node2->numNbrs;j++)
{

...
ChangeArmBurgID (home, node2, nbr, -1, 1);
ChangeArmBurgID (home, nbr, node2, -1, 1);

...
/* check whether nbr node becomes isolated due to arm

removal, if yes then remove this node */
if (NodeConnectivity(nbr)==0) RemoveNode (home, nbr, 1);

...
}
/* Check whether node2 become isolated nodes, if yes remove this node */
if (NodeConnectivity(node2)==0) RemoveNode (home, node2, 1);
return;

}

29

A

B C

I II A

B C

I II

D

(a) (b)

Figure 12: (a) Nodes A, B are native of domain I and node C is native of domain II. Node B is a link node
of domain I since it is connected with “ghost” node C. (b) Insertion of node D between B and C will make
D the “new” link node and B the “old” link node. Thus (B, D, C) forms a Triplet of (old, new, ghost).
Domain II will received this Triplet from domain I and update the link C-B with link C-D.

6 Remesh

Function Remesh ensures even discretization of dislocation lines by removing and inserting 2-nodes (nodes
that have two neighbors). Node removal will be handled first. Nodes that have both neighbors local and are
closer to either one of the neighbors than a minimum distance (minSeg) will be deleted (by RemoveNode),
unless it is otherwise marked for exemption. To avoid over-deletion, the two neighboring nodes of each
deleted node are marked. If the two dislocation segments of a 2-node glides on two different planes, the node
is also marked for exemption.

If two nodes are separated by more than maxSeg, a new node will be inserted between them (by
InsertNewNode). Node insertion is allowed not only between two native nodes, but also between a na-
tive node and a “ghost” node (a node that belongs to a neighboring domain). The latter case is much more
complicated and is handled by transmitting “Triplets” between neighboring domains, as discussed below.

First we introduce the notion of “link” node. It is defined as a native node that has one or more neighbors
being “ghost” nodes, such as node B of domain I in Fig. 12(a). When a new node D is inserted between B
and C as shown in Fig. 12(b) by domain I, domain II has to be notified of this event, in order to replace
the link C-B with link C-D. For this purpose, the domain that inserts a new node between a link node and
a “ghost” node (in this case domain I) needs to report a Triplet of nodal indices (old, new, ghost) to the
neighboring domain (domain II).

Before handling remeshing, CommSendLinkNodes and CommUnpackLinkNodes update the positions of
neighboring “ghost” nodes of each link node, as they may be changed after nodal movement. SetupTriplets
then allocates buffers for Triplet information exchange. After Remesh, Triplet information is sent between
neighboring domains by CommSendTriplets. Link updates across domains such as depicted in Fig. 12(b)
will then be performed by FixTriplets.

7 Load Balancing

7.1 Function Migrate

After motion some nodes leave the spatial limits of their original domain and need to be incorporated into
a new domain, i.e. stored in a new processor; they are called “Migrators”. Function Migrate handles nodal
migration, which is listed below.

void Migrate (Home_t *home)
{
/* Build a list of link nodes: i.e. local nodes with non-local neighbors */

FindLinkNodes (home) ;

/* Find all local out-migrators. Also add any new link nodes caused by

30

* migration to link nodes list
*/
MigFindMigrators (home) ;

/* Trade migrators with neighboring domains */
CommSendMigrators (home) ;
MigUnpackMigrators (home) ;

/* Send the domain neighbors the old/new tag pairs for migrators incoming
* to this domain.
*/
CommSendOldNewTags (home) ;

/* from the old/new tag pairs supplied by neighbors, plus the set generated
* by this domain, reorganize all the old/new tag info for quick access
*/
MigBuildOldNewMaps (home) ;

/* Use the old/new maps to update all linkages to and from migrating nodes */
MigUpdateLinks (home) ;

return ;
}

Function MigFindMigrators finds all the nodes that will migrate to neighboring domains by checking their
current position against domain limits. An array *outMigFlag is initialized to be all zeros; for each migrator
index the corresponding entry of *outMigFlag is set to one. The migrators indices from current domain
(regardless of destination domain) are stored in array *allMigs. They are also grouped according to the
destination domain and kept in the *outMigs array of “RemoteDomain” structures.

CommSendMigrators and MigUnpackMigrators then send these migrators between domains. Migrator
nodes are freed from their original domain and inserted into the **nodeKeys array of the new domain. These
new nodes as well as their neighbors are still having their old Tags, i.e. reflecting their memory location in
the original domain. Their new indices are listed in the *newNodes array of the new domain.

To update nodal connections due to Tag change, the new domain uses CommSendOldNewTags to broadcast
the old and new Tags of each new incoming nodes to all neighbor domains. This is necessary because, as
shown in Fig. 13, two nodes that belonged to the same domain could migrate to two different domains, so
that all domains in the neighborhood need to be notified of this change. “Triplets” of old domain ID, old
index and new index of each incoming nodes are collected in *oldNewBuf of “Home” and is sent to *intBuf
of the “RemoteDomains” structures of neighboring domains.

Now each domain has accumulated a set of integer buffers (*oldNewBuf of its own and *intBuf of each
of its “RemoteDomains”) recording the Tag change of migrator nodes; the buffers are indexed according to
the new domain of migrator nodes, as shown in Fig. 14. To make this information more accessible, function
MigBuildOldNewMaps builds up a set of maps (*oldNewMap) that group the migrator nodes according to their
old domain indices, i.e. it performs a “transpose” operation on the integer buffers. As shown in Fig. 15,
the “Home” structure as well as all of its “RemoteDomains” has an oldNewMap, which groups the migrator
nodes according to their old domain ID. Each map is an array of new tags, indexed by the old indices of
migrator nodes.

Once the “Maps” are completed, MigUpdateLinks then update the old Tag of each migrator node to its
new Tag, and change the connections (neighboring nodes) of each migrator and link node to their new Tags.

31

II

III
I

A

B

A

B

Figure 13: Two nodes A and B that belonged to domain I migrates to domain II and III respectively. All
domains that are neighboring domain II and III will be notified of this change.

...

... ...

home

remoteDomain
0

remoteDomain
1

oldNewBuf

intBuf intBuf

domainID
old old

index
new
index

...
Figure 14: Integer buffers *oldNewBuf of “Home” and *intBuf of “RemoteDomains” group migrator nodes
according to their new domain ID’s. Each buffer entry is a triplet of (old domainID, old index, new
index).

...

... ...

Tag
new

Tag
new

Tag
new

Tag
new

home

remoteDomain
0

remoteDomain
1

...

oldNewMap

oldNewMapoldNewMap

(−1,−1) (−1,−1)

old index

Figure 15: “Maps” are build based on integer buffers that group migrator nodes according to their old
domain ID’s. Each map is an array of new nodal “Tags” indexed by old nodal indices.

32

8 Loading Condition

33

9 Visualization

For debugging purposes, we installed an X-window display package to DD3d so that we can view dislocations
during the simulation. DisplayC.h, DisplayC.c serve as C wrappers for the C++ class YWindow defined in
display.h, display.cpp. In DisplayC.h, the following functions and control variables are exported to C
callers. In a parallel code such as DD3d, the caller has to ensure that only a single processor (e.g. processor
0) calls DisplayC functions and manipulates window control variables.

/* DisplayC.h */
...

extern "C" void ReadWindowSpec(char *fname);

extern "C" void WinLock();
extern "C" void WinUnlock();
extern "C" void WinClear();
extern "C" int WinAlive();
extern "C" void WinRefresh();
extern "C" void WinDrawPoint(double x,double y,double z,double r,

unsigned long color,unsigned long attr);
extern "C" void WinDrawLine(double x0,double y0,double z0,

double x1,double y1,double z1,
unsigned long color,
double r,unsigned long attr);

extern "C" void Sleep();
extern "C" unsigned long AllocShortRGBColor(unsigned r,

unsigned g, unsigned b);
...

/* Window control variables */
extern int enable_window;
extern char win_name[100];
extern double point_radius, line_width;
extern int win_width, win_height;
extern int sleepseconds;
extern unsigned colors[MAXCOLOR];
extern char color_name[MAXCOLOR][COLORNAMELEN];
extern char bgcolor_name[COLORNAMELEN];
extern int color_scheme; /* 0: color by domain,

1: color by Burgers vector */

ReadWindowSpec(char *fname) reads window control variables from file specified by *fname, e.g. “win.script”.
A sample “win.script” file is given below.

win_script

enable_window = 1

win_width = 500 win_height = 500

color00 = red
color01 = green
color02 = magenta
color03 = cyan
#...

34

color_scheme = 1 #1 for domain, 2 for Burgers vector

point_radius = 0.005 line_width = 0.01

sleepseconds = 1000

The order of each data entry does not matter, as long as it complies with the syntax varname = value. A
space has to exist before and after the = sign. The # sign comments out everything thereafter till the end of
line. The binding between a string (e.g. ‘‘win width’’) and the variable (e.g. win width) is made possible
by calling function bindvar in DisplayC.c, for example,

/* DisplayC.c */
...

void MyParser::initparser()
{

...

bindvar("win_width",&win_width,INT);
bindvar("win_height",&win_height,INT);

...
}

Functions WinDrawPoint and WinDrawLine allow user to draw points and lines into 3-dimensional space
directly. The cubic framework in the viewing window has dimension [-1,1] in x, y, z directions. So
coordination data need to be normalized to fit in the viewing window. Function Plot gives an example of
how to use DisplayC routines.

/* Plot.c */
...

void Plot (Home_t *home)
{

...

if(!WinAlive()) return;
WinLock();
WinClear();

/* Find simulation box size Lx, Ly, Lz */

...

/* Draw Nodes */
for(i=0;i<home->newNodeKeyPtr;i++)
{

node=home->nodeKeys[i];
if(node==0) continue;
x=node->x; y=node->y; z=node->z;

/* Normalize coordinates */
x=(x-xmin)/Lx*2-1;
y=(y-ymin)/Ly*2-1;
z=(z-zmin)/Lz*2-1;

35

Figure 16: Screen shot from X-window plotting of DD3d. The entire simulation space is divided into 8
domains.

WinDrawPoint(x,y,z,point_radius,colors[0],1);
}

WinUnlock();
WinRefresh();

}

In DD3d, only processor 0 opens an X-window and plots the dislocation configuration. In order to
show all the nodes, some of which are stored at other processors/domains, processor 0 has to receive all
nodal information before plotting. This is done by calling CommSendMirrorNodes and MirroUnpackNodes
at the beginning of function Plot. They store positional information of all nodes from other domains under
the MirrorDomain structure of “Home”. Fig. 16 is a screen shot of a DD3d configuration running with 8
processors (8 domains). The dislocation segments are colored according to the domains they belong to.

36

10 How to Use

10.1 Compile and Run

DD3d has been tested on Linux i386, Linux alpha, and ASCI Blue machines. To compile, type

make

It needs MPI, X11 libraries and header files. To run, type

make run

For machines that implements MPI by MPICH, make run runs dd3d by invoking
mpirun -np ‘./getprocnum‘ dd3d, where getprocnum computes the total number of processors by multi-
plying numXdoms, numYdoms, and numZdoms specified in the input file (by default control.script).

10.2 Input Files

The major input file for DD3d is a script file, by default control.script, but a different file can be supplied
in the command line. For debugging purposes, DD3d also reads in a win.script file, which specifies how
the dislocation configurations should be plotted in an X-window. These two script files have similar formats.
They have actually a free-format, in that the data entries do not have to follow a fixed sequence. Values
are assigned to variables through the varname = value syntax. The control.script file recognizes control
variables, such as numXcells = 3, totalsteps = 100 etc. The win.script file recognizes other variables,
such as win width = 500. It will be further discussed in Section 6.

The pound sign # marks for comments in the script files. Anything from # to the end of line is neglected
by the parser. Preprocessor macros are also supported. For example, if the file contains #define syma symb,
the preprocessor will replace every syma in the script by symb before handing it to DD3d. A line #include
‘‘con1.cn’’ will cause the preprocessor to paste the content of file con1.cn to replace itself.

The nodal configurations, including positions and connectivities, are specified by config = [nodal data],
where nodal data is a chunk of string with a fixed format, which deserves some more explanation. A sample
control.script file is given below.

DD3d simulation control file (use -*-shell-script-*- format)
repartition = 1
printOldIDs = 0

DD3d configuration (use -*-shell-script-*- format)
config = [
(1) Box X, Y, Z (in b)

-17500.0 -17500.0 -17500.0
17500.0 17500.0 17500.0

(2) Burgers vector array (number)
8
###(b_id, bx, by, bz)
1 0.5773503 0.5773503 0.5773503
2 -0.5773503 -0.5773503 -0.5773503
3 0.5773503 0.5773503 -0.5773503
4 -0.5773503 -0.5773503 0.5773503
5 0.5773503 -0.5773503 0.5773503
6 -0.5773503 0.5773503 -0.5773503
7 0.5773503 -0.5773503 -0.5773503
8 -0.5773503 0.5773503 0.5773503
(3) Number of nodes
2
(Primary lines: node_id, old_id, x, y, z, numNbrs, constraint, domain, index)
(Secondary lines: nbr[i], burgID[i])

37

1 1 -2000.0000 10.0000 -8000.0000 1 7 0 0
2 6

2 1 -2000.0000 10.0000 8000.0000 1 7 0 1
1 5

###domain boundaries (nXdoms, nYdoms, nZdoms)
1 1 1

###domain boundaries (X, Y, Z)
-17500.0

-17500.0
-17500.0
17500.0

17500.0
17500.0

]

numXcells = 3 numYcells = 3 numZcells = 3
numXdoms = 1 numYdoms = 1 numZdoms = 1
maxstep = 200
checkcollision = 1 ###0 no check, 1 check, 2 check and pause, 3 pause every step

###4 check and highlight
eRate = 1.0 indxErate = 1 deltaTT = 1.0e-6
rmax = 200 rann = 10
appliedStress = [1.e7 0 0 0 0 0]

The first line is a comment. The second line tells DD3d to repartition the nodes into different proces-
sors (domains). If on the other hand repartition = 0 is given, then the previous partition given in the
config = [...] entry will be reused. The data within the bracket of config = [...] follows a
fixed format, although anything between # and the end of line is also neglected as a comment. The first six
numbers specify the dimension of the simulation box, i.e xmin, ymin, zmin, xmax, ymax, zmax. Then follows
the Burgers vector list, beginning with its length. After that, the total number of nodes is given, followed
by the information of every node. Every node will take at least two lines. The first line gives its index (only
meaningful within this file to specify connections), old index (for debugging purposes), positions (x, y, z),
number of neighbors numNbrs, constrain type, domain ID and index within the domain. If repartition = 0
was specified, the node will be given to the same domain and assigned to the same Tag as specified by the
last two integers. Every node will then have numNbrs number of lines, giving the index of its neighbors
and the Burgers vector ID for the segment. The following lines suggest how the simulation box should be
decomposed into domains. They will be ignored if repartition = 1 was given.

Outside the config = [...] block, the script is free format again. In this script, the simulation box
is divided into 3× 3× 3 cells, but uses a single domain. The maximum simulation step is given by maxstep
= 200 . Variable checkcollision is used for debugging purposes. When it is 0, then no collision is checked
and dislocation segments will simply pass through each other without experiencing short range reaction. If
it is 1, collision detection and handling is applied. If it is 2, the simulation will pause whenever a collision
is detected, and one will need to click ’p’ in the X-window to resume the simulation. When it is 3, the
simulation pauses at every step. For checkcollision = 4, the simulation does not pause, but will slow
down whenever a collision is detected and nodes involving the collision will be highlighted.

There are other variables that can be specified in the control.script file. If they do not appear, then
their default values will be used.

10.3 Output Files

Need to Write: Restart files, having the same format as control.script, and can be supplied
to run DD3d again.

38

Dump files
dump0 Before Migrate
dump0 After Migrate
dump1 Before Migrate
dump1 After Migrate

39

A List of Control Variables

Need to Write: List of Functions

Control variables in structure param for control.script.

typedef enum {Periodic=0, Free=1, Reflecting=2} BoundType_t ;
typedef struct _param Param_t ; struct _param {

int nXcells, nYcells, nZcells ; /* numXcells, numYcells, numZcells */
int nXdoms, nYdoms, nZdoms ; /* numXdoms, numYdoms, numZdoms */

BoundType_t xBoundType ; /* Periodic, Free, or Reflecting */
BoundType_t yBoundType ;
BoundType_t zBoundType ;
...
real8 fixed ;
real8 eRate ; /* strain rate */
real8 edotdir[3]; /* uniaxial loading axis */
...
real8 Lx, Ly, Lz ; /* length of entire simulation box */
real8 minSeg ; /* min allowable segment length, before removing a node */
real8 maxSeg; /* max allowable segment length, before adding a node */
...
real8 timeStart ; /* Initial Time */
real8 timeNow; /* current time */
int allowSubcycling ; /* if 0, recompute remote force every collision */

/* if 1, don’t recompute every cycle necessarily */
real8 nextRemForceTime ; /* time to recalc remote forces on all segments */
...
real8 deltaTT; /* proposed time step */
real8 realdt; /* real time step = min (deltaTT, tc_min); */
...
int loadType ; /* 0 Creep

* 1 Constant strain rate
* 2 Displacement-controlled
* 3 Load-controlled, load vs. time curve */

real8 velcutoff; /* upper bound of all segment velocities (sound barrier) */
real8 rmax ; /* maximum migration distance per timestep for any node */
real8 rann ; /* closest distance before dislocations are

* considered in contact */
real8 rc ; /* core radius in elastic interaction calculation */
real8 Ecore; /* core energy (w.r.t. the choice of rc) in unit of Pa */
int subdiv; /* subdivision on segments (for Neighbor interaction) */

int cycleStart ;
int maxstep;

real8 disloDensity; /* dislocation density */
real8 shearModulus, pois, YoungsModulus; /* elastic constants */
real8 burgMag; /* length unit */
real8 MobScrew;
real8 MobEdge;
real8 CheckScrew;

40

int checkcollision;
int elasticinteraction;
int repartition ;
int printOldIDs ;

real8 appliedStress[6];
real8 delpStrain[6],delSig[6],totpStn[6];
real8 delpSpin[6],totpSpn[6];

real8 dslipstn[12][3][3];
real8 dslipspn[12][3][3];
real8 slipstn[12][3][3];
real8 slipspn[12][3][3];
real8 dslipdens[12],olddens[12];
real8 slipdens[12];

int extendconfigspec[3] ;
char micro3dcnfile[100] ;

/* controls for various output files */

int savecn, savecnfreq, savecncounter;
int gnuplot, gnuplotfreq, gnuplotcounter;
int tecplot, tecplotfreq;
int psfile, psfilefreq, psfilecounter;
int velfile, velfilefreq, velfilecounter;
int armfile, armfilefreq, armfilecounter;
int savedensityspec[3];
int writepovrayspec[3];

int saveprop, savepropfreq, savepropdetail;

/* file directory name */
char dirname[300];

double sessileburgspec[30];
double sessilelinespec[30];
double calplanestressspec[10];
double createconfigspec[10];
int imgstrgrid[6];

/* binary restart file name, and flag to specify binary or text restart
* config data */

char binfile[100] ;
int binrestart ;

char Rijmfile[100], RijmPBCfile[100];
int readRijmfile ;

} ;

A sample win.script file.

enable_window = 0 #or 1
win_width = 500 win_height = 500 win_name = DD3d

41

rotateangles = [0 0 0 1.33] #Hor, Ver, Spin, Scale

color_scheme = 2 #1 for Domain, 2 for Burgers vector
bgcolor = grey30
color00 = red #normal node color
color01 = magenta #cross link color
color02 = turquoise
color03 = green
color04 = SkyBlue2
color05 = gold3
color06 = chocolate
color07 = yellow
color08 = azure4
color09 = ivory3
color10 = ivory3
reversergb = 1

point_radius = 2 line_width = 2
sleepseconds = 3

B Nodal Driving Force Calculation

C Predicting Segment Pair Collision

Need to Write: Use bounding box to pre-screen segment pairs that are well separated. The need
for a second cell structure.

In DD3d, we formulate the segment pair collision detection as a minimization problem. Given the initial
nodal positions ~r1, ~r2, ~r3, ~r4 and velocities ~v1, ~v2, ~v3, ~v4, define

~A(α, β, t) = [(~r1 + ~v1t)(1− α) + (~r2 + ~v2t)α]− [(~r3 + ~v3t)(1− β) + (~r4 + ~v4t)β] (35)

F (α, β, t) = ~A(α, β, t) · ~A(α, β, t) (36)

A collision is said to occur if

min
0 ≤ α, β ≤ 1
0 ≤ t ≤ ∆t

F (α, β, t) ≤ ρ2 (37)

is satisfied. When this is the case, we need to determine the “projected” time tp at which inequality (37)
is first satisfied. ρ is introduced to circumvent the round-off error and to improve the robustness of the
algorithm. At the same time, one can also consider ρ as the physical core radius of the dislocation; if two
dislocation segments are closer than ρ they are technically in contact.

To solve this minimization problem, let’s first look at the derivatives of function F and ~A, where ~Aα ≡
∂ ~A/∂α, ~Aαβ ≡ ∂2 ~A/∂α∂β, etc.

~Aα = (~r2 + ~v2t)− (~r1 + ~v1t) (38)
~Aβ = −(~r4 + ~v4t) + (~r3 + ~v3t) (39)
~At = [~v1(1− α) + ~v2α]− [~v3(1− β) + ~v4β] (40)

~Aαα = 0 (41)

42

~Aββ = 0 (42)
~Att = 0 (43)

~Aαβ = 0 (44)
~Aαt = ~v2 − ~v1 (45)
~Aβt = −~v4 + ~v3 , (46)

The derivatives of F can be expressed in terms of the derivatives of ~A.

Fα = 2 ~A · ~Aα (47)

Fβ = 2 ~A · ~Aβ (48)

Ft = 2 ~A · ~At (49)

Fαα = 2 ~Aα · ~Aα (50)

Fββ = 2 ~Aβ · ~Aβ (51)

Ftt = 2 ~At · ~At (52)

Fαβ = 2 ~Aβ · ~Aβ (53)

Fαt = 2 ~At · ~Aα + 2 ~A · ~Aαt (54)

Fβt = 2 ~At · ~Aβ + 2 ~A · ~Aβt (55)

The Jacobian

J(α, β, t) = det

 Fαα Fαβ Fαt

Fαβ Fββ Fβt

Fαt Fβt Ftt

 (56)

can be either positive or negative, so that in general F (α, β, t) is neither strictly convex or concave. However,
for any given t, the sub-Jacobian with respect to α and β

det
(

Fαα Fαβ

Fαβ Fββ

)
= 4 det

(
~Aα · ~Aα

~Aα · ~Aβ

~Aα · ~Aβ
~Aβ · ~Aβ

)
= 4(~Aα − ~Aβ)2 ≥ 0 (57)

This means that for any given t, F (α, β, t) is convex with respect to α, β. This motivates us to minimize F
with respect to α, β first, and lastly for t.

For a given t, one can show that F (α, β, t) is a quadratic function of α, β, with terms such as α, αβ etc.
Minimizing F with respect to α and β is straight forward. In general, the minimum will be achieved at α̂
and β̂ which satisfies,

Fα = (~r2 − ~r1) · (~r1 − ~r3) + (~r2 − ~r1)2α− (~r2 − ~r1) · (~r4 − ~r3)β = 0 (58)
Fβ = (~r4 − ~r3) · (~r1 − ~r3)− (~r4 − ~r3) · (~r2 − ~r1)α + (~r4 − ~r3)2β = 0 (59)

Here we write ~r1 to represent ~r1 + ~v1t, etc. When the solution of Eqs.(59-59) lies outside of the domain
0 ≤ α, β ≤ 1, the optimal solution (α̂, β̂) then has to lie on the domain boundary. When this is the case, we
choose (α̂, β̂) from the following four solutions.

Need to Write: Degenerate case: det(Fαβ) = 0, when ~r12 ‖ ~r34

43

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

t
G

(t
)

t
min

=1.982602 G
min

=0.000000

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

t

α,
 β

α
β

Figure 10: An example of (a) G(t) and the corresponding (b) α̂(t), β̂(t).

1. α = 0,
2. α = 1,
(for 1 and 2)
β′ = (~r4 − ~r3) · [(~r1 − ~r3) + (~r2 − ~r1)α]/(~r4 − ~r3)2 ,
β = min(1,max(0, β′))

3. β = 0,
4. β = 1,
(for 3 and 4)
α′ = (~r2 − ~r1) · [−(~r1 − ~r3) + (~r4 − ~r3)β]/(~r2 − ~r1)2 ,
α = min(1,max(0, α′))

Therefore, for arbitrary t we can solve for the optimal α̂(t) and β̂(t) which minimizes F (α, β, t) for the
fixed t. Define

G(t) = F (α̂(t), β̂(t), t) (30)

An example of G(t) and the corresponding α̂(t), β̂(t) are plotted in Fig. 10. In this case, the two segments
are moving on the same plane, so that G(t) can be zero on a continuous domain of t. Also note that G(t) is
not monotonic and can have multiple local minimums.

Now Eq.(7) reduces to a one-dimensional problem, i.e. whether and at which t does G(t) become smaller
that ρ2. We use the following “sawtooth” algorithm to solve this problem.

Define g(t) =
√
G(t), the “sawtooth” algorithm will determine the first t in the domain [0,∆t] for which

g(t) ≤ ρ. Since g(t) is the closest distance between the two segments at time t, it has to satisfy

dg(t)
dt
≤ vmax , (31)

where
vmax = max(|~v1 − ~v3|, |~v1 − ~v4|, |~v2 − ~v3|, |~v2 − ~v4|) , (32)

because vmax is the upper bound to the relative velocity between any two points on the two segments.

20

Figure 17: An example of (a) G(t) and the corresponding (b) α̂(t), β̂(t).

1. α = 0,
2. α = 1,
(for 1 and 2)
β′ = (~r4 − ~r3) · [(~r1 − ~r3) + (~r2 − ~r1)α]/(~r4 − ~r3)2 ,
β = min(1,max(0, β′))

3. β = 0,
4. β = 1,
(for 3 and 4)
α′ = (~r2 − ~r1) · [−(~r1 − ~r3) + (~r4 − ~r3)β]/(~r2 − ~r1)2 ,
α = min(1,max(0, α′))

Therefore, for arbitrary t we can solve for the optimal α̂(t) and β̂(t) which minimizes F (α, β, t) for the
fixed t. Define

G(t) = F (α̂(t), β̂(t), t) (60)

An example of G(t) and the corresponding α̂(t), β̂(t) are plotted in Fig. 17. In this case, the two segments
are moving on the same plane, so that G(t) can be zero on a continuous domain of t. Also note that G(t) is
not monotonic and can have multiple local minimums.

Now Eq.(37) reduces to a one-dimensional problem, i.e. whether and at which t does G(t) become smaller
that ρ2. We use the following “sawtooth” algorithm to solve this problem.

Define g(t) =
√

G(t), the “sawtooth” algorithm will determine the first t in the domain [0,∆t] for which
g(t) ≤ ρ. Since g(t) is the closest distance between the two segments at time t, it has to satisfy

dg(t)
dt

≤ vmax , (61)

where
vmax = max(|~v1 − ~v3|, |~v1 − ~v4|, |~v2 − ~v3|, |~v2 − ~v4|) , (62)

because vmax is the upper bound to the relative velocity between any two points on the two segments.

44

−1 −0.5 0 0.5 1
0

0.5

1

t

G
(t

)1/
2

t
min

=−0.012327 G
min
1/2 =0.548598 rho=0.100 n=5

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

t

α,
 β

α
β

Figure 11: Example of sawtooth algorithm on [-1,1]. The algorithm concludes that no collision is possible
after 5 evaluations of G(t).

The “sawtooth” algorithm utilizes this information (the derivative of g(t) is bounded by a known value) to
scan a time domain [t0, t1] and determine whether g(t) ≤ ρ is possible. The algorithm goes as the following.

1. Set t = t0

2. If t > t1, no collision possible, exit.

3. If g(t) < ρ, collision detected, exit.

4. Else t = t+ g(t)/vmax, go to 2.

The purposes of steps 1, 2, 3 of the above algorithm are obvious. In step 4, we increase our time by
g(t)/vmax because if both g(t1) > ρ and g(t2) > ρ, while t2 = t1 + g(t1)/vmax, then one can prove that for all
t ∈ [t1, t2], g(t) > q/2. In this case, one can claim (within some approximation) that Eq.(7) has no solution
in domain [t1, t2] and one can then examine the next domain [t2, t2 + g(t2)/vmax].

When the two segments well separated from each other during [t0, t1], the “sawtooth” algorithm quickly
scans through the domain with only a few evaluations of g(t), as shown in Fig. 11. When collisions exist,
the algorithm will quickly converge to the first occurrence of the collision, as shown in Fig. 12.

Need to Write: Using the same function to detect type (2) and (3) events.

21

Figure 18: Example of sawtooth algorithm on [-1,1]. The algorithm concludes that no collision is possible
after 5 evaluations of G(t).

The “sawtooth” algorithm utilizes this information (the derivative of g(t) is bounded by a known value) to
scan a time domain [t0, t1] and determine whether g(t) ≤ ρ is possible. The algorithm goes as the following.

1. Set t = t0

2. If t > t1, no collision possible, exit.

3. If g(t) < ρ, collision detected, exit.

4. Else t = t + g(t)/vmax, go to 2.

The purposes of steps 1, 2, 3 of the above algorithm are obvious. In step 4, we increase our time by
g(t)/vmax because if both g(t1) > ρ and g(t2) > ρ, while t2 = t1 + g(t1)/vmax, then one can prove that for all
t ∈ [t1, t2], g(t) > q/2. In this case, one can claim (within some approximation) that Eq.(37) has no solution
in domain [t1, t2] and one can then examine the next domain [t2, t2 + g(t2)/vmax].

When the two segments well separated from each other during [t0, t1], the “sawtooth” algorithm quickly
scans through the domain with only a few evaluations of g(t), as shown in Fig. 18. When collisions exist,
the algorithm will quickly converge to the first occurrence of the collision, as shown in Fig. 19.

Need to Write: Using the same function to detect type (2) and (3) events.

D Cost Analysis

TimeStart() and TimeStop()
An example timing report time 0.

45

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

t

G
(t

)1/
2

t
min

=−0.739474 G
min
1/2 =0.020922 rho=0.100 n=28

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

t

α,
 β

α
β

Figure 12: Example of sawtooth algorithm on [-1,1]. The algorithm converges to the first collision after 28
evaluations of G(t).

5 Line Reconnection

Need to Write: ExecuteEvent() in EventHandle.c

void ExecuteEvent (Home_t *home)
{

domid = home->selectevdom ;
evid = home->selectevid ;
ClearOpList (home);
if(evid<0) return ; /* no event */
...
if(type == 1)
{/* Collision, type = 1 */

...
if(...)

if(...)
HandleNodeNodeCollision (home,nodeA,nodeB);

else
HandleNodeSegCollision (home,nodeA,node3,node4);

else
if(...)

HandleNodeSegCollision (home,nodeB,node1,node2);
else

HandleSegSegCollision (home,node1,node2,node3,node4);
}
else if(type == 2)
{

22

Figure 19: Example of sawtooth algorithm on [-1,1]. The algorithm converges to the first collision after 28
evaluations of G(t).

domain : 0 total cycles : 200

total time 13.421528 initialization time
0.088086 sort native nodes 0.003847 comm send ghosts
0.002677 calculate velocity 0.156644 comm send velocity
0.000579 advance and reconnect 12.136459 comm send reconnects
0.000308 fix reconnects 0.000327 X window plot
0.174117 comm send link nodes 0.003186 comm send triplets
0.000898 migration 0.016039

References

References

[1] Wei Cai, Atomistic and Mesoscale Modeling of Dislocation Mobility, Ph.D. Thesis, M.I.T., May (2001).

46

	DISCLAIMER

